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ABSTRACT 30 

Poor air quality episodes occur often in metropolitan Atlanta, Georgia. The primary focus of this 31 

research is to assess the capability of satellites as a tool in characterizing air quality in Atlanta. 32 

Results indicate that intra-city PM2.5 concentrations show similar patterns as other U.S. urban 33 

areas, with the highest concentrations occurring within the city. Both PM2.5 and MODIS AOD 34 

show more increases in the summer than spring, yet MODIS AOD doubles in the summer unlike 35 

PM2.5. A majority of OMI AI is below 0.5. Using this value as an ambient measure of 36 

carbonaceous aerosols in the urban area, aerosol transport events can be identified. Our results 37 

indicate that MODIS AOD is well correlated with PM2.5 on a yearly and seasonal basis with 38 

correlation coefficients as high as 0.8 for Terra and 0.7 for Aqua. A possible alternative view of 39 

the PM2.5 and AOD relationship is seen through the use of AOD thresholds. These probabilistic 40 

thresholds provide a means to describe the AQI through the use of past AOD for a specific area. 41 

We use the NAAQS to classify the AOD into different AQI codes, and probabilistically 42 

determine thresholds of AOD that represent the majority of a specific AQI category. For 43 

example, the majority 80% of moderate AQI days have AOD values between 0.5 - 0.6. The 44 

development of thresholds could be a tool used to evaluate air quality from the use of satellites in 45 

regions where there are sparse ground-based measurements of PM2.5. 46 

IMPLICATIONS 47 

Satellites can be used successfully as a tool for characterizing air quality on an urban scale. 48 

Statistical analysis of multi-year satellite data can yield a useful and easily understandable way 49 

of describing air quality through satellite derived AQI. In areas without many monitoring sites of 50 

PM2.5, this approach could be useful to those air quality forecasters. Additionally, the use of 51 

satellite thresholds could increase satellite utility beyond that of qualifying events for exclusion 52 

using the U.S. EPA’s exceptional event rule in determination of attainment of the NAAQS. 53 

INTRODUCTION 54 

Any person flying into Atlanta, Georgia’s Hartsfield-Jackson Atlanta International 55 

Airport during the summer will see first-hand the visible effects of poor air quality in Atlanta. 56 

Atlanta has the highest population density in the southeastern U.S. making it one of the larger 57 

urban areas in the contiguous U.S. (http://www.census.gov/popest/metro/metro.html). The 58 
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metropolitan area is comprised of 28 counties, with the city boundary contained mostly within 59 

Fulton County. High population density and large amounts of environmental toxins have placed 60 

Atlanta at the top of Forbes’s Most Toxic City List for 2009 61 

(http://www.forbes.com/2009/11/02/toxic-cities-pollution-lifestyle-real-estate-toxic-cities.html). 62 

The American Lung Association declares Atlanta as the 17
th

 worst city for year-round particle 63 

pollution (http://www.stateoftheair.org/2009/city-rankings/polluted-cities-particle-pollution-64 

year.html). This study considers particle pollution as a mixture of small particles and liquid drops 65 

that have aerodynamic diameter less than 2.5 m (PM2.5). Epidemiological studies in Atlanta 66 

have linked increases in particle pollution to increased asthmatic pediatric emergency room visits 67 

1
, while Peel et al. 

2
 found that the risk of death increased for hypertensive people in cases of 68 

elevated PM10.  69 

Assessment of air quality is commonly based on averages of 24-hour data from ground-70 

based measurements of PM2.5 performed at dedicated monitoring sites. The use of 24-hour 71 

average PM2.5 data is to relate concentrations to the air quality index (AQI), which relates the 72 

level of air pollution to possible health effects. The AQI is used to disseminate information about 73 

air quality to the public via different methods of media, e.g., local television news, radio or 74 

newspaper (Table 1). The AQI is scaled to relate the PM2.5 concentrations to the National 75 

Ambient Air Quality Standard (NAAQS)
3
. Through the Clean Air Act of 1990, the U.S. EPA has 76 

the authority to set national air quality standards to protect the public health. In 2006, the U.S. 77 

EPA strengthened the NAAQS by reducing the 24-hour standard from 65 gm
-3

 to 35 gm
-3

. In 78 

doing so, the AQI must now be revised to reflect the changes in the NAAQS, and this action by 79 

the EPA is currently under review. Table 1 gives the old AQI and the proposed AQI revisions. 80 

These changes will certainly affect a city’s proportion of good, moderate, and unhealthy days. 81 

The PM2.5 measurements that are used for AQI forecasts provide high temporal resolution, but 82 

lack spatial resolution and coverage. In a large metropolitan area like Atlanta with only seven 83 

monitoring sites for forecast purposes, the lack of spatial resolution has implications for air 84 

quality forecasts and impacts. 85 

 Satellite data has been thought of as a means to address the lack of spatial coverage by 86 

monitoring sites. Satellite observations can be used to characterize aerosols, identify aerosol 87 

transport, and identify cases of biomass burning 
4-7

. Studies that relate satellite measurements to 88 

PM2.5, generally use the aerosol optical depth (AOD) retrieved from the NASA MODIS 89 
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(Moderate Resolution Imaging Spectroradiometer) instrument. AOD is a measure of light 90 

extinction through the atmosphere for a given wavelength. Engel-Cox et al. 
8
 completed one of 91 

the first nationwide studies that presented results of the relationship between PM2.5 and AOD. 92 

They demonstrated that the relationship varied by region, and the east coast of the U.S. had the 93 

highest correlation between AOD and PM2.5. Further highlighting this regional perspective is the 94 

work of Al-Saadi et al. 
9
, which developed a methodology for applying AOD maps over maps of 95 

PM2.5 concentrations for the entire U.S. to improve air quality forecasts through the IDEA 96 

(Infusing satellite Data into Environmental Applications) website 97 

(http://www.star.nesdis.noaa.gov/smcd/spb/aq/).  Recently published work by Zhang et al. 
10

 98 

updated the methodology of the IDEA website to account for the regional nature in the 99 

PM2.5/AOD relationship. Gupta and Christopher 
11

 conducted a five-year study into assessing the 100 

relationship between AOD and PM2.5 for most of the southeast U.S. The reported correlations 101 

showed a high degree of agreement, yet there was still interstate and intrastate variation.  102 

Using an established methodology for relating PM2.5 to AOD, other researchers focused 103 

on this relationship on a city-scale. Hutchinson et al. 
12

 report that MODIS was adept at 104 

describing an aerosol transport event that impacted air quality in parts of Texas.  Research from 105 

the southern U.S. found that in Birmingham, AL, satellite data were well correlated with surface 106 

PM2.5 measurements with a correlation coefficient as high as 0.7 
13, 14

.  107 

Most recently, Hoff and Christopher 
15

 provided an in-depth critical review of the field.   108 

Their study outlines issues that can prohibit wider applicability of satellite data for air quality 109 

studies. One issue is the spatial mismatch between satellite data and the PM2.5 monitoring sites 110 

that provide point measurements. When stations are located closely together, it is likely that 111 

those sites will occur in the same satellite pixel that reduces the number of independent 112 

observations per station. Another issue lies in the assumptions used for satellite retrievals. The 113 

satellite science teams are constantly making updates to their retrieval algorithms to better 114 

represent the regionality of aerosol composition. AOD does not provide information about the 115 

location of aerosols within the atmospheric column. Aerosols that are transported into an area 116 

can be located higher in the atmosphere, where ground-based monitors do not detect it, but 117 

satellites do. Instances such as this cause a mismatch between what the satellite and ground-118 

based monitors observe. Ultimately, one conclusion from Hoff and Christopher (2009) is that 119 

reducing the uncertainty of the PM2.5/AOD through statistical regressions is unlikely, which is 120 
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why we propose using a statistical analysis of AOD that directly relates to AQI bypassing the 121 

PM2.5/AOD regression.  122 

In this study, hourly and 24-hour averaged PM2.5 measurements from seven PM2.5 123 

stations across the metro Atlanta area are analyzed along with MODIS AOD from March 1- 124 

August 31, 2004 – 2008. From the hourly data, subsets are created to coincide with Terra and 125 

Aqua satellite overpasses. Another satellite instrument used in this study is the Ozone 126 

Monitoring Instrument (OMI). This instrument provides measurements of aerosols in the UV-127 

region of the electromagnetic spectrum. OMI performs many functions; however, of most 128 

interest to this study is its ability to detect light absorbing aerosols over land 
16

. 129 

 Here, we examine the applicability of satellite data to characterize representative urban 130 

aerosols in Atlanta. The specific goals of this research are to (1) determine the variability of 131 

PM2.5 and satellite data on a yearly and seasonal basis; (2) assess the robustness of the PM2.5-132 

AOD relationship through linear regressions; and (3) statistically identify AOD thresholds that 133 

can prescribe air quality directly through AQI. We will also determine the effect of the new AQI 134 

designations in prescribing air quality through AOD thresholds. 135 

DATA AND METHODOLOGY 136 

PM2.5 Monitoring Stations 137 

 As mentioned previously, the EPA makes determinations of whether states meet the 138 

NAAQS for particulate matter. That standard states that in order to receive attainment for daily 139 

PM2.5, the 98
th

 percentile of the three-year average at each pollution monitor cannot exceed 35 140 

gm-3 
3
. States usually own and operate a network of continuous measurements that are used 141 

primarily for air quality forecasts and air quality alerts. For this study, we obtained one-hour and 142 

24-hour measurements of PM2.5 from seven metro Atlanta Tapered-Element Oscillating 143 

Micobalances (TEOMs) from March 1 – August 31, 2004–2008, from the Georgia Department 144 

of Natural Resources, Ambient Monitoring Program (AMP) 145 

(http://www.air.dnr.state.ga.us/amp/). The type of measurements used in this research are not 146 

used for that determination; however, the Ambient Monitoring Program (AMP) assigns an 147 

exceedance whenever their 24-hour averaged TEOM-based PM2.5 measurements exceed the 148 

NAAQS daily standard of 35.5 gm
-3

. Five out the seven stations have data for the entire period; 149 
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however, two stations (Confederate Ave. and Walton) only have data for 66% of 2005. These 150 

seven stations cover three types of locations; urban – Confederate Ave., suburban – Gwinnett, S. 151 

DeKalb, McDonough, and rural – Newnan, Walton, Yorkville. The PM2.5,24 dataset is a moving 152 

average that uses the current hour’s concentrations and the past 23 hours’ concentrations. Two 153 

data sets were created for pairing with MODIS satellite observations, which have different 154 

equatorial crossing times. To match MODIS on Terra, hourly measurements from 10 and 11 am 155 

were averaged together to create the dataset PM2.5,T. Similarly for MODIS on Aqua, hourly 156 

measurements from 1 and 2 pm were averaged together to create the dataset PM2.5,A.  Analyses 157 

are performed using all 3 PM2.5 datasets (PM2.5,24, PM2.5,T and PM2.5,A).  158 

MODIS Data  159 

 The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument flies 160 

onboard two of NASA’s Earth Observing System (EOS) satellites. The first MODIS instrument 161 

is on the Terra platform, and the second MODIS instrument is on the Aqua platform. Terra flies 162 

in descending polar orbit with an equatorial crossing time of approximately 10:30 am; while 163 

Aqua, flies in ascending polar orbit with an equatorial crossing time of approximately 1:30 pm. 164 

Generally, the satellites have overpass times over Georgia 5 -15 minutes after their equatorial 165 

crossing times. Both satellites orbit 700 km above the Earth in low earth orbit, and they have 166 

near global coverage daily.   167 

 MODIS passively measures reflected radiances from Earth across a broad wavelength 168 

spectrum. It primarily uses three wavelength channels (0.47, 0.66 and 2.12 m) to measure 169 

atmospheric aerosols over land 
17

.  We use over five GB and 3700 files of Collection 5 data from 170 

NASA’s Level 1 and Atmosphere Archive and Distribution System (LAADS). Collection 5 is 171 

the most recent release of the data products from the MODIS science team. The analysis is 172 

performed with MODIS Level 2 data, which have a resolution of 10x10 km
2
. The variable of 173 

most importance to this study is “Optical_Depth_Land_and_Ocean” at the 0.55 m wavelength. 174 

AOD is an unitless measure of the amount of light attenuation over a set distance, i.e., path. 175 

AOD can vary between 0 and 5, with values above unity being ascribed as heavy haze, biomass 176 

burning, or dust 
8
.     177 

 Following similar methodologies from Gupta and Christopher 
18

 and Engel-Cox et al. 
8
, 178 

satellite data are matched with station data using a 0.5° degree box around each ground station.  179 

Only days where both data types are available are considered for additional correlation analysis. 180 
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The time period of March 1 – August 31, 2004–2008, is considered for this research. Thus each 181 

MODIS instrument has seven different datasets that correspond to the AOD measurements over 182 

the seven ground-based PM2.5 measurement stations. Another dataset is created for comparisons 183 

with the OMI sensor, i.e., city-scale AOD. This dataset is considered to be Atlanta AOD and 184 

covers a lat/lon box of 33 – 34.5° N and 83.5 – 85.3°W. Additionally the time period for this 185 

dataset matches the OMI dataset. 186 

OMI Data 187 

The Ozone Monitoring Instrument (OMI) takes measurements in the near-ultraviolet 188 

(UV) for retrievals of gases and aerosols 
16

. OMI flies onboard the NASA satellite Aura. Aura 189 

and Aqua (MODIS) fly together in a satellite constellation called A-Train. A great advantage of 190 

the satellite constellation is multiple measurements made from different sensors within 15 191 

minutes of each other.   192 

In this study we consider the aerosol products only, primarily the UV Aerosol Index (AI). 193 

The time period of March 1- August 31, 2005–2008, is considered, which is one year shorter 194 

than the PM2.5 and MODIS data because Aura did not launch until July 2004. OMI data were 195 

obtained from the NASA GSFC DAAC. The most recent release of data is in Collection 3. The 196 

OMI instrument has a swath of 2600 km and provides mostly global coverage daily. Aerosol 197 

products are retrieved at a spatial resolution of 13 x 24 km at nadir, however the spatial 198 

resolution increases at the extremes of the satellite swath 
16

.. In the presence of UV-absorbing 199 

aerosols, the AI has positive measures with values above 0.5 considered significant 
6
.  Due to 200 

OMI’s larger footprint, it is difficult to match OMI measurements with specific station locations. 201 

Thus OMI measurements are taken for a lat/lon box of 33 – 34.5° N and 83.5 – 85.3°W. 202 

Although, AI is a qualitative measure, it does provide information about the spatial pattern of 203 

UV-absorbing aerosols over land. This data product is uniquely able to identify the carbonaceous 204 

aerosols associated with biomass burning and urban pollution.  205 

RESULTS 206 

Characterization of urban aerosols through PM2.5  207 

 We first want to determine the variability of PM2.5 on a yearly and seasonal basis. The 208 

analysis of yearly means reveals that there is year-to-year variability within all three PM2.5 209 
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datasets (PM2.5,T, PM2.5,A and PM2.5,24). Barplots of the five years of selected months (1 March – 210 

31 August) of the PM2.5,A and PM2.5,T, PM2.5,24 datasets for Gwinnett (33.96°, -84.07°)  and 211 

Newnan (33.40°, -84.74°) sites are shown in Figure 1 (A & B). Gwinnett and Newnan are used 212 

to contrast differences between urban/suburban vs. rural stations. These barplots display how 213 

PM2.5 averages varied over the study period. The years of 2006 and 2007 have the highest means 214 

for all seven sites. The means for each year all the stations are shown in Table 1; though we only 215 

consider spring and summer, our PM2.5 averages agree well other published work of PM2.5 in 216 

Atlanta 
19

. The years 2004 and 2008 are below the five-year average, while 2006 and 2007 are 217 

the highest above the five-year average for Gwinnett, and 2005–2007 are the highest above the 218 

five-year average for Newnan. PM2.5,24 for all stations is in between PM2.5,T and PM2.5,A, but it 219 

behaves similarly to the other PM2.5 datasets. Both Table 1 and Figure 1 (A&B) show that the 220 

average PM2.5 concentrations vary about 10 gm
-3

 from each other. There are some instances 221 

where the difference between PM2.5,A and PM2.5,T are significant for  = 0.05, and those 222 

instances are bolded in Table 1. Edgerton et al. 
19

 found that during the day, hourly 223 

measurements can vary by as much as 50 gm
-3

 in the Atlanta area comparable to observations 224 

in this study 225 

PM2.5 data show a distinct seasonality having higher values in the summer compared to 226 

spring. Figure 1 (C and D) show seasonal averages of the three PM2.5 datasets for Gwinnett and 227 

Newnan. During the spring at Gwinnett, PM2.5,T varies from  around 15 – 21 gm
-3

, PM2.5,A 228 

varies between 10 -14 gm
-3

,
 
and PM2.5,24 varies between 13 – 16 gm

-3
. Summer averages show 229 

increases of 30 – 45% over spring averages. All stations show similar values. The similarity 230 

between stations is shown through timeseries analysis of PM2.5 (not shown), and the analysis also 231 

indicates that summer has more variability than spring. Research by Butler et al. 
20

 and Edgerton 232 

et al. 
21

provide additional information on seasonality of PM2.5 in metro Atlanta. However, there 233 

is recent work that hypothesizes that secondary organic aerosols (SOA) which have a 234 

summertime maximum could be a previously underestimated portion of PM2.5 
22

. It should be 235 

noted that the reduced seasonality of 2007 is likely a product of the late spring wildfire of 2007, 236 

which produced the additional influx of aerosols to the metro area 
23

.  237 

 We have discussed the yearly and seasonal trends within the PM2.5 data; however, we 238 

also want to understand how each of the satellite-overpass datasets relate to each other and to 239 

PM2.5,24. To assess the similarity between PM2.5,T and PM2.5,A we created scatterplots of the two 240 
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datasets and calculated linear regression statistics. Scatterplots of PM2.5,A vs. PM2.5,T for 2004–241 

2008 and all years combined are shown in Figure 2. Correlation coefficients (r or r-values) 242 

between PM2.5,T and PM2.5,A vary around 0.78 – 0.85. The coefficient of determination (R
2
), 243 

which is a measure of variance, varies between 0.61 – 0.72. When seasonality was examined 244 

between these two datasets, the summertime showed higher r-values than spring. Our results are 245 

consistent with Butler et al 
20

, which shows diurnal variation of PM2.5 in Atlanta as a function of 246 

season, and during the summer the diurnal variation is less pronounced than during other 247 

seasons. From these statistical measures we conclude that both datasets have similar 248 

observations, but there are instances where the diurnal cycle and meteorology change the 249 

conditions between Terra and Aqua. When the PM2.5,24 dataset is compared to the PM2.5,A and 250 

PM2.5,T datasets, statistics show that they are well correlated with r-values between 0.65 – 0.83.  251 

PM2.5,T correlates slightly better than PM2.5,A, but 30% of the variance shown by the satellite-252 

overpass datasets is not represented in the 24-hour average.  This could have implications for 253 

studies that relate MODIS AOD to the 24-hour average of PM2.5.  254 

We have shown that during our study period the PM2.5 concentrations across metro 255 

Atlanta are similar but have differences due to location. A majority of stations have their highest 256 

means during 2006 and 2007, with 2004 and 2008 as local minima. The year 2007 was 257 

dominated by a wildfire that changed the nature of PM2.5 in Atlanta by lessening the difference 258 

between spring and summer seasons. Across all stations summer months have increased PM2.5 259 

concentrations as shown by increased means and variances. Additionally, we have shown that 260 

PM2.5,24 captures 70% of the variability within the satellite-overpass PM2.5 datasets; this could 261 

impact the strength of the AOD and PM2.5 correlations. For instance, during short (hours) 262 

duration exceedance events, the PM2.5/AOD correlation will be lower if PM2.5,24 is considered 263 

rather than hourly data centered around the satellite overpass. In the following section we will 264 

compare satellite measurements to the PM2.5 measurements to determine how well the satellites 265 

capture the PM2.5 behavior spatiotemporally.  266 

Characterization of urban aerosols with satellite products (MODIS AOD and OMI AI)  267 

In this section, we focus upon comparing the variability of MODIS AOD to PM2.5 and we 268 

assess OMI’s ability to characterize urban aerosols in Atlanta. Over 5GB and 3700 files of 269 

MODIS AOD data were analyzed. In comparing yearly averages of MODIS Terra to MODIS 270 

Aqua, Aqua has higher AOD at all stations for 2004-2006 and 2008. However, in 2007 Terra is 271 
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markedly higher than Aqua. This finding is different from the PM2.5 yearly averages where 272 

PM2.5,T > PM2.5,A,which might imply that Terra should record higher values of AOD, yet this is 273 

not the case. Yearly averages of MODIS AOD at Gwinnett and Newnan are presented in Figure 274 

3 (A and B). Like the trend shown in Figure 1 (A and B), MODIS AODs have their highest 275 

averages in 2006 and 2007 and minima in 2004 and 2008. Aerosols that are trapped within a 276 

shallow boundary layer are more difficult to assess from space than well-mixed aerosols within a 277 

deep planetary boundary layer (PBL) typically found in the early afternoon 
14

.  278 

From a seasonal perspective, MODIS AOD has higher summer averages than spring 279 

averages, which is in agreement with PM2.5 (see Figure 1 (C and D)). In fact, for many cases the 280 

summertime AOD as shown in Figure 3 (C and D) is almost double that of the springtime, yet 281 

this doubling is not found in the PM2.5 record. Barplots of seasonally averaged AOD from 282 

MODIS at Gwinnett and Newnan are shown in Figure 3 (C and D). Our results indicate that the 283 

difference between Aqua and Terra spring AOD is smaller than the difference between the two 284 

during the summer. However, examination of the PM2.5 record yields that the largest difference 285 

between the datasets occurs during the spring rather than the summer. Goldstein et al. 
24

 286 

hypothesize that the high summertime AOD values are driven by SOA from biogenic volatile 287 

organic compounds (BVOC) that occur aloft within the ABL thus not impacting surface mass 288 

measurements of PM2.5.  289 

 Our previous analysis focused on AOD at specific stations, but we want to establish 290 

background levels of absorbing aerosols in Atlanta to determine if there is any relationship 291 

between MODIS AOD and OMI AI. We conduct the following analysis using city-scale datasets 292 

(see OMI Section for explanation). PM2.5 in Atlanta is mostly carbonaceous in nature with 35.9% 293 

being organic carbon and 8.9 % being black carbon. The other dominant species is sulfate which 294 

comprise 25.3% of average PM2.5 mass 
21

. Aerosols in the U.S. southeast are small in diameter 295 

and are predominantly light-scattering. Maps of time averaged (March 1- Aug 31) Angstrom 296 

exponent from MODIS (not shown) confirm this result with values ranging from 1 – 1.6. Since 297 

the background is predominately made of light scattering particles, AI will be in a unique 298 

position to detect absorbing aerosols against this background. Averages of OMI AI show little 299 

variability from year to year, with a slight maximum occurring in 2007. As viewed from space, 300 

the carbonaceous portion of urban aerosols in Atlanta is fairly constant around 0.3 for 2005 – 301 

2008.  Also, across all years a majority (80%) of AI values are below 0.5. Using the yearly 302 
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average or 80% cutoff to establish background conditions of Atlanta implies that if AI rises 303 

above these values it could be indicative of aerosol transport. 304 

OMI AI does not appear to have the same seasonality as MODIS AOD. The mean and 305 

median values of AI vary little between spring and summer. Scatterplots of OMI AI vs. MODIS 306 

AOD Terra/Aqua are shown in Figure 4 to access the relationship between the datasets. As seen 307 

in Figure 4, there is not a discernable linear relationship between the AI and AOD. One feature 308 

shown in Figure 4 is that the same AI values correspond to lower AOD values in the spring and 309 

higher AOD values in the summer, which implies that any improvement of the AI/AOD 310 

relationship is solely due to larger AOD associated with summer. The lack of a linear 311 

relationship results in very low correlation coefficients as shown in Table 2. The correlation 312 

analysis of OMI and MODIS yielded low linear correlation values shown in Table 2. Having 313 

shown that AI and AOD are not related further substantiates the effectiveness of AI as an 314 

indicator for transport events. For instance, the small box in Figure 4(A) shows that AI is almost 315 

1.4, but AOD is around 0.3 on 13 April 2005. There are no PM2.5 exceedances on this day, and 316 

considering that AI is sensitive to aerosol height this implies that the transport is occurring above 317 

the PBL. This is an example of smoke remnants being transported into the area from the western 318 

U.S. Another example occurs in 2007 (see box in Figure 4C), where smoke aerosols are 319 

transported into the area. There were large active wildfires in Idaho and Montana during the time 320 

period August 2007. Those wildfires caused a large haze event across the eastern U.S. During 321 

this event there were PM2.5 exceedances in Atlanta on 13, 15-18 August 2007. The carbonaceous 322 

aerosols detected by OMI on 14 August are aloft and most likely become entrained in the ABL 323 

on the following days. Jacob and Winner 
25

 conclude that wildfires could become an important 324 

and more frequent contributor to PM2.5.  The aerosols associated with this additional aerosol 325 

burden will most likely be carbonaceous in nature, and the baseline of AI already established 326 

would help to better assess the impact these potential wildfires will have on air quality. 327 

We have shown that satellites adequately describe the general nature of urban aerosols in 328 

the metro Atlanta area. Though there are some differences between what times of day results in 329 

the highest values, the overall patterns of MODIS AOD match well with the PM2.5 observed 330 

patterns on a yearly and seasonal basis. OMI AI allowed us to identify specific cases of aerosol 331 

transport into the metro area by detecting the absorbing signature associated with these events.   332 

 333 



 12 

PM2.5 and AOD Analysis 334 

We perform a statistical analysis to assess the PM2.5/AOD relationship in the Atlanta 335 

metropolitan area. Figure 5 presents a linear relationship between MODIS Terra and Aqua. The 336 

two satellites are well correlated with r-values > 0.78. While the coefficients of determination for 337 

the different years are above 0.6, the diurnal loading of aerosols, meteorological conditions, and 338 

boundary layer dynamics as well as technical issues between the two satellite instruments are all 339 

possible reasons why the R
2
-values are not higher. During the summer in Georgia, the timing of 340 

convective systems growth often occurs in the early afternoon, which coincides with Aqua’s 341 

overpass. In this study, MODIS Aqua has fewer observations than MODIS Terra, but both 342 

satellites have between 50 – 65% data available. Other U.S. locations have shown similar 343 

satellite data loss 
26

.  344 

Across all seven stations and for both satellites, a majority of the points lie below the 345 

NAAQS exceedance standard of 35 gm
-3 

and have AOD less than 0.7 as represented in Figure 346 

6. Scatterplots of PM2.5 vs. MODIS Terra and Aqua at Gwinnett and Newnan are shown for each 347 

year in Figure 6, where each year is represented by different symbols. The scatterplots can be 348 

divided into quadrants, the NE quadrant is Q1, the NW quadrant is Q2, the SW quadrant is Q3 349 

and the SE quadrant is Q4. These quadrants are representative of certain meteorological dynamic 350 

conditions. For instance, Q1 and Q3 are most likely associated with a well-mixed boundary layer 351 

such that aerosols are well distributed throughout the atmospheric column, thus satellite and 352 

ground-based measurements are in sync together. A vast majority of the data points lie within 353 

Q3. Q3 contains points that have low AOD and good to moderate AQI. However, Q1 describes 354 

data points with both high AOD and high PM2.5 measurements (i.e., orange and higher AQI).  355 

 The remaining two quadrants in most cases can distinguish between different sources of 356 

air pollution. The points within Q2 have high AOD but low PM2.5 concentrations. This situation 357 

could arise from long-range transport of aerosols into the area. The long-range transport of 358 

aerosols generally occurs above the boundary layer. Subsequently, these aerosols do not 359 

necessarily impact ground-based measurements (see discussion in previous section). However, it 360 

is possible that those aerosols can become entrained within the boundary layer due to changing 361 

dynamics and can impact ground-based measurements further downwind of the source. Finally, 362 

Q4 has data points that coincide with high PM2.5 concentrations and relative low AOD. More 363 

than likely, these points represent increasing PM2.5 concentrations  of local source emissions. A 364 
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possible scenario where this could occur is a strong inversion. In late spring and summer in 365 

Georgia strong inversions occur that trap all the local sources of pollution, e.g., cars and power 366 

plants, close to the surface by hindering vertical mixing. Low-level aerosols are more difficult 367 

for satellites to detect, and again this could lead to a satellite and ground-based measurement 368 

mismatch.  369 

We have discussed what factors could possibly influence the PM2.5/AOD relationship; the 370 

following analysis involves determining the robustness of the PM2.5/AOD relationship through 371 

correlations. For a majority of the stations, both Aqua and Terra are correlated with PM2.5. 372 

Correlation coefficients for Aqua vary between 0.37 – 0.76, and Terra has r-values of 0.25 – 0.68 373 

(see Tables 4 and 5). MODIS Terra and Aqua produce correlations that are similar to each other. 374 

In Tables 4 and 5, the correlation coefficient (r), the slope, y-intercept, and the number of 375 

observations are summarized. In 2007, MODIS Terra and Aqua have the highest correlations 376 

across all of the stations. The higher means of Terra AOD do not result in better agreement with 377 

PM2.5, except in 2007 where Terra has higher r-values than Aqua. Terra also produces more 378 

variability in the correlation coefficients across the stations in comparison to Aqua. The 379 

seasonality of AOD and PM2.5 is reflected in the values as well. Spring produces higher 380 

correlations than summer. The results presented here are somewhat different than the results 381 

from Gupta and Christopher 
11

.  In their study, they presented correlations between estimated 382 

PM2.5 from both a two-variable model and multivariate model. Our correlations and slopes show 383 

more variance than their reported values. Some of the difference could be due to the different 384 

time periods under consideration.  385 

To determine how robust the AOD is at characterizing PM2.5, the AQI designations of 386 

PM2.5 concentrations are used to categorize the AOD. For instance, all AOD data points that 387 

correspond to PM2.5 concentrations between 0 – 15.4 gm
-3

 are considered to be good/green 388 

AOD. This classification methodology is used for all six categories of AQI. This categorized 389 

AOD is then used to determine a threshold that can probabilistically separate days of air quality 390 

exceedances from days without exceedances.   391 

Figures 7 and 8 show AQI classified Aqua/Terra MODIS AOD for 2004 – 2008. The top 392 

figure is for Terra and the bottom is for Aqua. For Figure 7 the upper panels are green AOD and 393 

the bottom panels are yellow AOD. The panels on the left are frequency histograms and on the 394 

right are cumulative histograms of AOD. In Figure 7, green and yellow AOD have similar 395 
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frequency and cumulative distributions. The cumulative distributions for both satellites are 396 

interpreted as 80% of Code Green AOD are below 0.35, and 80% of Code Yellow AOD are 397 

below 0.65. In Figure 8 the upper panel is Code Orange AOD and if present the bottom panel is 398 

Code Red AOD. Code Orange and Red AOD have different distributions. It is not surprising that 399 

red AOD is skewed toward higher AOD. The closely related relationship between AOD and 400 

PM2.5 suggests that high AOD will occur in cases of high PM2.5. Code Orange AOD is associated 401 

with AOD of 0.75 for Aqua and 0.65 for Terra. The lack of Code Red AOD makes determination 402 

of thresholds difficult. 403 

The broad thresholds (80%) discussed above yielded overestimation in the orange and red 404 

categories. To more accurately match the PM2.5-derived AQI we used different thresholds from 405 

each satellite. For this we calculated AOD thresholds for Gwinnett for all years. The yearly 406 

threshold levels, e.g., 80%, 90%, and 95% were averaged to create AQI categorized AOD 407 

thresholds specifically tuned for Gwinnett. Figure 9 shows our AOD-derived AQI and PM2.5-408 

dervived AOD at Gwinnett. Specifically for Terra we used the 80% threshold for green AQI and 409 

95% for yellow and orange AQI. The exact cut-offs for Terra AOD are: green is below 0.26, 410 

yellow is 0.26 – 0.72, orange 0.72 – 1.0, and red is everything greater than 1. For Aqua we used 411 

the 80% threshold for green AQI and 90% for yellow and orange AQI. While AOD cut-offs for 412 

Aqua are slightly different than for Terra. Aqua AOD thresholds are: green is below 0.28, yellow 413 

is 0.28 – 0.69, orange is 0.69 – 1.15, and red is everything over 1.15.  414 

While we only show pie charts based upon the new AQI designations, there are small 415 

differences between them and pie charts produced with AOD-derived AQI using old 416 

designations. The differences occur mostly within the yellow and orange AQI categories. 417 

Though these figures are not an exact match for the PM2.5-based AQI, they provide information 418 

at an easily understandable and relatable manner. Additionally, the best guesses used in 419 

determining quadrants agree well with the probabilistic measures of AOD given by this type of 420 

analysis. Having probabilistic means to describe the incidence of AOD over metro Atlanta 421 

allows for this threshold approach to be extrapolated for use in areas without PM2.5 monitors. 422 

AQI categorized AOD has great applicability to rural areas in Georgia and the other rural areas 423 

across the country, because this approach is not bound strictly by achieving high correlations 424 

between PM2.5 and AOD.  425 
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CONCLUSIONS 426 

 Utilization of remotely sensed data allows for a broader perspective view of air quality. 427 

Local air quality is affected by a number of factors including regional emissions, temperature, 428 

atmospheric dynamics, and traffic patterns. Satellite data also allows for viewing features that 429 

could impact air quality in the near future. This research presented a multi-year analysis of spring 430 

and summer data from 2004- 2008 in metropolitan Atlanta. Our research focused upon the 431 

synergy between ground-based measurements of PM2.5 and NASA satellite observations in the 432 

terms of Aerosol Optical Depth (AOD) from MODIS and the Aerosol Index (AI) from OMI. 433 

MODIS AOD ( ) is a derived measurement from both MODIS instruments onboard the Terra 434 

and Aqua satellites. OMI onboard Aura is an instrument that measures the absorbing aerosols in 435 

the UV-spectrum. Our research goals were to understand the variability within the PM2.5 and 436 

AOD data records, assess the strength of the PM2.5/AOD relationship, and probabilistically 437 

determine AOD thresholds that relate directly to AQI categories.  438 

 Results for the PM2.5 analysis show that PM2.5 differences are likely due to station 439 

location, with the highest averages of PM2.5 occurring at an urban site and the lowest averages 440 

occurring at a rural site. The spring months show less variability than summer months in the 441 

PM2.5 record. MODIS AOD has captured the same yearly behavior shown in PM2.5, yet on a 442 

seasonal basis the summertime has AOD values double that of the spring. Remotely sensed data, 443 

such as MODIS AOD, are a valuable tool for use in air quality applications. Our results suggest 444 

that SOA formation in the region could have an impact on local PM2.5 concentrations. Satellite 445 

data are uniquely able to provide information about SOA levels on an almost daily basis. This 446 

information could aid air quality forecasters by allowing them to fine tune their models to more 447 

accurately describe conditions in the U.S. Southeast. OMI AI does not have a discernable 448 

seasonal component. Background levels of AI for the metro area are around 0.3. Eighty percent 449 

of AI is below 0.5, therefore, AI values significantly higher than this could be indicative of long-450 

range aerosol transport into the area. The results of linear regressions between PM2.5 and AOD 451 

are r-values above 0.5 for a majority of sites. Interestingly, Terra produced higher correlation 452 

coefficients than Aqua in 2007, while in other years the satellites have similar r-values. We 453 

propose using statistical analysis of AOD data to relate AOD directly to AQI via probabilistic 454 

measures based upon past AOD values for a specific area. The research also determined that 455 

80% of Code Green days occur with AOD of 0.35 or less, and 80% of Code Yellow days occur 456 
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with AOD of 0.65. These probabilistic AOD cutoffs can be used to quickly access the AQI 457 

classifications without the dependence upon ground-based measurements. There is some 458 

agreement between PM2.5 based AQI and satellite based AQI. Further work will need to be done 459 

to better tune the methodology for orange and red AQI.  460 

 Future plans are to continue this type of analysis using the data from the Multi-angle 461 

Imaging SpectroRadiometer (MISR) instrument onboard Terra. A portion of that research would 462 

be a comparison between MODIS and MISR in the U.S. southeast. Additional analysis would be 463 

done to apply the proposed probabilistic approach with MISR data. Also, the methodology for 464 

using AOD thresholds to understand general tendencies about AQI can be tuned to specific 465 

states, regions, and areas with few PM2.5 measurements. The data from these satellites also 466 

provide an important means for determination and understanding of "normal" conditions, which 467 

can allow air quality policy makers to make better use of satellite data for possible application to 468 

the U.S. EPA's Clean Air Interstate Rule as well as the exception events rule for NAAQS 469 

designations.  470 

 471 
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 566 

TABLES 567 

 568 

PM2.5 24-hour (μg/m3)  
AQI Category  Color Index Values  

Current  Proposed  

Good  Green 0 - 50  0.0 - 15.4  No change  

Moderate  Yellow 51 - 100  15.5 - 40.4  15.5 - 35.4  

Unhealthy for 

Sensitive Groups  

Orange 101 - 150  40.5 - 65.4  35.5 - 55.4  

Unhealthy  Red 151 - 200  65.5 - 150.4  55.5 - 150.4  

Very Unhealthy  Purple 201 - 300  150.5 - 250.4  No change  

     

Hazardous  Maroon 301 - 400  250.5 - 350.4  No change  

  401 - 500 (this level 

used for emergency 

episode planning only.)  

350.5 - 500  No change  

Table 1. AQI designations. Source: U.S. EPA 569 

 570 
Location 2004 2005 2006 2007 2008 

 Terra Aqua Terra Aqua Terra Aqua Terra Aqua Terra Aqua 

Con. Ave. - - 18.61 18.87 23.63 21.25 23.42 21.31 20.68 17.89 

Gwinnett 16.69 14.12 17.72 15.63 19.94 17.02 21.64 17.22 15.90 13.70 

McDonough 17.26 14.74 18.41 16.59 21.13 17.32 21.54 16.63 17.29 13.51 

Newnan 16.63 14.14 18.05 16.14 19.94 16.10 22.55 17.01 17.13 14.29 

S. Dekalb 17.24 14.33 18.54 15.50 19.20 16.96 23.04 21.42 18.22 15.42 

Walton - - 16.80 15.23 18.81 16.48 19.70 15.79 15.84 13.17 

Yorkville 14.86 14.64 16.30 16.24 18.60 16.87 19.45 19.33 14.30 13.58 
Table 2. Means of PM2.5 concentrations for each station. Bold numbers are significantly different from each other for  = 0.05. 571 

 572 

Year Season r #  
  Terra Aqua Terra Aqua 

2005 Spring -0.13 -0.05 57 53 
 Summer 0.06 0.23 46 48 

2006 Spring -0.12 -0.09 65 64 
 Summer 0.30 0.42 66 67 

2007 Spring 0.03 -0.13 65 69 
 Summer 0.08 0.10 58 61 

2008 Spring -0.35 -0.31 60 62 
 Summer 0.18 0.15 60 59 

Table 3. Correlation coefficient and number of observations for OMI AI vs. MODIS AOD 573 

574 
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 574 

Location Year 2004 2005 2006 2007 2008 

 Season Spring Summer Spring Summer Spring Summer Spring Summer Spring Summer 

Confederate Ave. Slope - - 0.03 0.01 0.01 0.01 0.02 0.02 0.00 0.01 

 Y-intercept - - -0.24 0.30 -0.05 0.14 -0.12 -0.03 0.11 0.11 

 r - - 0.87 0.22 0.62 0.37 0.81 0.62 0.15 0.44 

 # - - 6 35 59 66 57 53 54 61 

Gwinnett Slope 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.05 0.13 -0.02 0.23 0.00 0.11 -0.01 0.08 0.10 0.16 

 r 0.68 0.51 0.66 0.50 0.62 0.44 0.76 0.67 0.29 0.41 

 # 53 48 46 38 67 53 61 53 54 63 

McDonough Slope 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.03 0.09 0.04 0.25 0.02 0.18 -0.05 0.03 0.09 0.17 

 r 0.54 0.64 0.51 0.38 0.53 0.40 0.70 0.67 0.25 0.34 

 # 54 44 56 39 57 70 59 59 51 61 

Newnan Slope 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.00 0.01 

 Y-intercept 0.00 0.16 0.02 0.28 -0.03 0.21 -0.05 0.09 0.11 0.08 

 r 0.44 0.46 0.57 0.30 0.73 0.37 0.78 0.61 0.16 0.56 

 # 55 32 40 35 57 63 57 57 49 62 

S. Dekalb Slope 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.02 0.14 0.06 0.33 -0.01 0.15 -0.04 -0.03 0.10 0.19 

 r 0.54 0.49 0.56 0.22 0.59 0.40 0.78 0.69 0.19 0.33 

 # 54 44 56 35 55 63 59 55 54 66 

Walton Slope - - 0.01 0.00 0.01 0.02 0.02 0.02 0.01 0.01 

 Y-intercept - - -0.03 0.28 0.03 0.06 -0.03 0.05 0.05 0.19 

 r - - 0.65 0.28 0.51 0.51 0.76 0.68 0.35 0.23 

 # - - 32 36 55 64 53 56 49 59 

Yorkville Slope 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.02 0.08 -0.04 0.24 -0.06 0.08 -0.05 0.00 0.03 0.11 

 r 0.45 0.60 0.74 0.38 0.62 0.51 0.74 0.76 0.50 0.51 

 # 55 42 47 40 57 60 55 57 50 57 
Table 4. Slope, Y-intercept, correlation coefficient, and number of observations of seasonal PM2.5,24 vs. MODIS Terra AOD. 575 
Dash denotes missing data. Bold numbers are significant at  = 0.05. 576 

 577 

578 
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 578 

Location Year 2004 2005 2006 2007 2008 

 Season Spring Summer Spring Summer Spring Summer Spring Summer Spring Summer 

Confederate Ave. Slope - - 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 

 Y-intercept - - 0.10 0.29 -0.09 0.11 0.03 0.02 -0.09 0.07 

 r - - 0.18 0.37 0.70 0.41 0.54 0.51 0.54 0.51 

 # - - 6 42 57 59 45 47 49 58 

Gwinnett Slope 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 

 Y-intercept 0.00 0.19 0.10 0.21 -0.04 0.11 0.10 0.10 0.02 0.14 

 r 0.51 0.40 0.39 0.49 0.70 0.46 0.56 0.59 0.46 0.46 

 # 60 54 47 44 60 50 51 50 48 67 

McDonough Slope 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.07 0.12 0.08 0.29 -0.02 0.14 -0.01 0.07 -0.02 0.07 

 r 0.56 0.54 0.47 0.38 0.67 0.46 0.62 0.65 0.58 0.53 

 # 58 46 49 43 54 58 43 55 52 61 

Newnan Slope 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.01 0.23 0.12 0.21 -0.05 0.17 -0.02 0.09 0.05 0.15 

 r 0.40 0.43 0.26 0.56 0.70 0.45 0.71 0.61 0.37 0.50 

 # 56 38 39 44 57 56 42 52 49 58 

S.Dekalb Slope 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 

 Y-intercept 0.02 0.13 0.10 0.30 -0.07 0.09 0.05 0.01 0.02 0.06 

 r 0.41 0.52 0.42 0.42 0.76 0.54 0.53 0.63 0.40 0.56 

 # 60 48 51 42 54 55 46 53 52 61 

Walton Slope - - 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 

 Y-intercept - - 0.14 0.23 -0.04 0.06 0.07 0.08 0.02 0.04 

 r - - 0.23 0.41 0.61 0.51 0.50 0.63 0.42 0.51 

 # - - 36 39 52 61 44 50 45 57 

Yorkville Slope 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 

 Y-intercept -0.01 0.06 0.04 0.20 -0.02 0.06 0.08 0.05 -0.04 0.15 

 r 0.41 0.59 0.51 0.56 0.59 0.57 0.49 0.72 0.59 0.47 

 # 52 44 44 42 58 53 49 55 50 61 
Table 5. Slope, Y-intercept, correlation coefficient, and number of observations of seasonal PM2.5,24 vs. MODIS Aqua AOD. 579 
Dash denotes missing data. Bold numbers are significant at  = 0.05. 580 
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LIST OF FIGURES 

Figure 1. Bar plots of yearly averaged PM2.5 at Gwinnett (a) and Newnan (b). Green 

dashed line represents PM2.5,T five-year average, and blue dashed line represents PM2.5,A 

five-year average.  Bar plots of seasonally averaged PM2.5 at Gwinnett (c) and Newnan 

(d). 

Figure 2. Scatterplots of PM2.5,T vs. PM2.5,A. Red line represents 1:1 correspondence. 

Figure 3.  Bar plots of yearly averaged MODIS AOD at Gwinnett (a) and Newnan (b). 

Green dashed line represents MODIS Terra five-year average, and blue dashed line 

represents MODIS Aqua five-year average. Bar plots of seasonally averaged MODIS 

AOD at Gwinnett (c) and Newnan (d). 

Figure 4. Scatterplots of OMI AI vs. MODIS Terra/Aqua AOD. Red line represents 1:1 

correspondence. Rectangular boxes are discussed in text. 

Figure 5. Scatterplots of MODIS Aqua AOD vs. MODIS Terra AOD. Red line 

represents 1:1 correspondence. 

Figure 6. Scatterplot of PM2.5,24 vs. MODIS Aqua AOD. 

Figure 7. (a) Relative frequency histograms and cumulative sum histograms of Code 

Green and Code Yellow Terra AOD for 2006. (b) Relative frequency histograms and 

cumulative sum histograms of Code Green and Code Yellow Aqua AOD for 2006. 

Figure 8. (a) Relative frequency histograms and cumulative sum histograms of Code 

Orange and Code Red Terra AOD for 2006. (b) Relative frequency histograms and 

cumulative sum histograms of Code Orange Aqua AOD for 2006. 

Figure 9. Piecharts of PM2.5-derived AQI, MODIS Terra-derived AQI, and MODIS 

Aqua-derived AQI at Gwinnett in 2006. 
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